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Overview of the Biodiversity & Soil Health Metrics Tool 

Nature-based Solutions (NbS) involve working with nature to tackle societal challenges, with benefits 

for both people and biodiversity. They cover a wide range of interventions, such as woodland creation 

to tackle flood and erosion risk, agro-ecological measures such as cover crops and beetle banks for 

sustainable farming, saltmarsh restoration for coastal protection, or green roofs and urban trees to 

reduce flooding and cool our cities.  

It is important to monitor the outcomes of NbS, for several reasons: 

• to build the evidence base on what works and what doesn’t work, and demonstrate impacts 

to funders and stakeholders; 

• to allow management to be adapted in response to any future environmental changes that 

threaten the success of the project; 

• to identify and manage any trade-offs that occur between different objectives such as food 

production, flood protection, recreation, biodiversity and carbon storage.  

Various tools and approaches exist for monitoring the different outcomes of NbS, but often 

monitoring is restricted to just one or two aspects such as carbon sequestration. This guide focuses 

on the ecological outcomes, both for biodiversity and soil health, which are often neglected. Some 

approaches for monitoring socio-economic outcomes are listed in the Agile Initiative’s Recipe for 

Engagement. 

The Biodiversity & Soil Health Metrics Tool provides practitioners with information to design effective 

ecological monitoring approaches for Nature-based Solutions (NbS) projects. There are many 

acknowledged and recognised biodiversity and soil health metrics used in academia, industry, and 

policy. This tool simplifies the selection process by highlighting the most informative and feasible 

metrics to provide a wide assessment of both biodiversity and soil health outcomes. 

The biodiversity metrics chosen were derived from Noss’s biodiversity framework (Noss 1990). This 

framework characterises the variety and variability of organisms and the processes that are crucial 

to maintaining them, identifying the major components (composition, structure, function) of 

biodiversity at multiple scales of organisation (landscape, community, population, genetic) (Figure 1).  

Soil health reflects the capacity of soils to perform their optimal functionality and to sustain the 

delivery of important ecosystem services over the long-term (Faber et al. 2022; Guo 2021; Bonfante 

et al. 2020; Vogel et al. 2019). The soil health metrics in this framework cover biological, chemical, 

and physical properties (Figure 2).  

https://www.agile-initiative.ox.ac.uk/wp-content/uploads/2023/11/Recipe-for-Engagement.pdf
https://www.agile-initiative.ox.ac.uk/wp-content/uploads/2023/11/Recipe-for-Engagement.pdf
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Figure 1. Noss’ Hierarchy of Biodiversity (adapted from Noss 1990): three primary attributes of biodiversity 
at different scales, with examples of metrics (note: some metrics overlap multiple scales or attributes) 

 

Figure 2. Structure of the soil health metrics, using the same scale categories as the Noss framework but 
different aspects of soil health (physical, chemical, biological). 
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Metrics are grouped into Tier 1, Tier 2, and Future metrics. Tier 1 covers a core set of metrics that 

broadly capture biodiversity and soil health responses to NbS interventions. Tier 2 represents metrics 

that are useful and informative but may be less feasible to monitor or only apply to some ecosystem 

types. Future metrics are assessed as being highly informative but currently not usually feasible for 

regular monitoring. Ideally, projects will select metrics that represent all axes of biodiversity 

(composition, structure, function) and soil health (biological, physical, chemical) at multiple scales 

(landscape, community, population). 

How to use the Tool 

The tool is for anyone implementing an NbS project and designing a monitoring protocol that covers 

biodiversity and soil health.  

For each metric, the tool contains the following information: 

• Metric summary: The relevance of the metric to biodiversity or soil health. 

• Methodology summary: A summary of the sampling layout and data collection approach to 

follow, with links to existing standardised methodologies. Approaches for calculating the 

metrics (e.g. using software packages) are summarised. Where multiple related derived 

metrics are possible the pros/cons of each are summarised. Connections and linkages 

between metrics are also highlighted. 

• Metric threshold or direction of change: Thresholds for the desired level of a metric or a 

desirable direction of change are given (where available). 

• Technological innovations: Highlights developing technologies that could improve or simplify 

future data collection.  

The metrics can be filtered using the following criteria (see Glossary for definitions): 

• Type of metric (Biodiversity, Soil health) 

• Aspect of biodiversity (Composition, Structure, Function) 

• Aspect of soil health (Chemical, Physical, Biological) 

• Scale (Landscape, Community, Population, Genetic) 

• Tier (Tier 1, Tier 2, Future metrics) 

• Ecosystem (Forest, Grassland, Peatland, Heathland, Saltmarsh, Wetland, Agricultural, Other) 

• Cost (High, Medium, Low) 

• Technical expertise (High, Medium, Low) 

• Standardised methodology (Yes, No, Partial) 
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Planning ecological monitoring within a Nature-based 
Solutions project 

Selecting your metrics 

TIER 

Tier 1 metrics provide the greatest amount of information on biodiversity and soil health while 

remaining feasible to measure. Where possible, projects should aim to collect data on all Tier 1 

metrics. 

Collectively, the Tier 1 metrics represent all aspects of biodiversity (Composition, Structure, Function) 

and soil health (Chemical, Physical, Biological). 

Tier 2 metrics are designed to supplement the core data collection, providing opportunities to gain 

an understanding of additional aspects of biodiversity and soil health that are likely to be relevant in 

specific projects only. 

Future metrics would be highly informative but have prohibitive data collection requirements or lack 

a standardised methodology, limiting the consistency of data collection across projects. Collection of 

these metrics may be possible in some projects but will require the development of a bespoke 

sampling plan and potentially a high level of specialist skills for processing samples and interpreting 

the derived data. 

Sampling regimes should aim to integrate the simultaneous collection of as many of the selected the 

metrics as possible, to save duplication of effort (see section on Planning your surveys). 

SCALE 

Metric scale (see Glossary) should be interpreted based on the project context. For instance, 

landscape-scale metrics, such as landscape diversity, are most likely to be relevant to larger-scale 

projects with multiple habitats present. For metrics that are collected at the community scale, the 

optimum sampling intensity may depend on the project area: recommendations on how to scale this 

are given. Population-scale metrics focus on understanding species-level dynamics and will be 

particularly relevant to projects that have species-specific objectives. Genetic metrics provide 

information on underlying genetic diversity, which predicts long-term resilience, adaptive capacity, 

and vulnerability of a species. These are most relevant in projects targeting conservation of specific 

species and where the project area covers most of a distinct population of that species, or as part of 

a larger-scale monitoring effort.  

COSTS 

An indication of the costs involved in data collection is given. Costs may differ depending on existing 

expertise and staff already available to collect data. See Glossary for thresholds between different 

cost classifications. 
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TECHNICAL EXPERTISE 

Technical expertise refers to the expertise required throughout the process of data collection, metric 

calculation, and interpretation. For example, vegetation biomass is a low technical expertise metric, 

simply requiring the diameter at breast height of trees to be measured. Collection of invertebrate 

biomass data requires a medium level of technical expertise: little expertise is required to collect the 

initial sample, but more specialist knowledge is needed to sort the specimens into high-level 

taxonomic groups. Functional trait diversity is a high expertise metric; expert taxonomic skills are 

needed to identify species and the process of classifying species by their functional traits and using R 

to calculate functional trait diversity also requires a high level of expert knowledge. 

METHODOLOGY 

We have noted where standardised methodologies for data collection are available. In some cases, 

the methodology will only cover part of the process, e.g. it might cover the sampling regime for 

species surveys, but not the process of deriving the species diversity metrics from the data collected. 

TECHNOLOGICAL INNOVATIONS 

For many metrics we note emerging technologies that have the potential to enhance and simplify 

monitoring in the future. For example: 

• For monitoring vegetation structure, the use of LiDAR could help to standardise the sampling 

and metric derivation process, particularly in terms of collecting data across non-forest 

ecosystems. 

• Species-level monitoring using eDNA reduces the need for taxonomic expertise however, it is 

currently very expensive and does not provide the abundance data needed to assess species 

diversity and relative abundance, which we have highlighted as important for understanding 

the ecological communities within NbS projects.  

Planning your surveys – integrating data collection for multiple metrics 

Data collection for different metrics should be co-located where possible. 

BIODIVERSITY 

• Landscape diversity requires a full site survey, mapping habitat areas of 400 square metres or 

more. Habitat areas are calculated from this survey. The landscape diversity survey can be used 

calculate the areas of different habitat types within a project. This can be used to stratify sample 

plots by habitat type: sample plots are proportionately allocated based on the area of each 

habitat within the site, with more plots on habitats covering the largest areas. In large sites with 

distinct habitat types, multiple plots per habitat type will allow metrics at the habitat-level. 

• Species diversity surveys are collected using either transect-based methods or plot-based 

methods – surveys should aim for shared plots/transects across taxonomic groups and 

intersection of plots and transects. Suggestions on minimum numbers of plots per site/habitat 

type are given in the methodology summary for each metric.  
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• Dominance-diversity curves, similarity, and absolute/relative abundance are derived from the 

data collected during species diversity surveys. 

• Functional trait diversity and identity are derived by linking functional trait data to data collected 

during the species diversity surveys. 

• Vegetation structure data is collected using plots. These should be overlaid with the species 

diversity plots where possible and, in large sites with multiple habitats, stratified by habitat type.  

o For forests a standardised method is available following the National Forestry Inventory 

methodology.  

o For herbaceous-dominated ecosystems (grassland, peatland, wetland, saltmarsh) and 

shrub-dominated ecosystems (heathland, scrub) there are no standardised 

methodologies available in the UK, but modification of a methodology used in the US is 

suggested.  

• Vegetation biomass data is collected using plots. 

o For forest ecosystems, metrics are derived from the data collected during vegetation 

structure surveys. 

o For herbaceous-dominated ecosystems (grassland, peatland, wetland, saltmarsh) and 

shrub-dominated ecosystems (scrub, heathland), destructive sampling is required so 

sampling should not occur within the species diversity or vegetation structure plots. Plot 

placement for vegetation biomass should be in areas that are representative of the 

species diversity/vegetation structure plots. 

• Tree diversity, tree age and seedling regeneration data can be collected during the vegetation 

structure surveys. 

• Pollination data is collected using pan traps; these should be aligned with data collection for 

species diversity and stratified by habitat type. 

• Deadwood volume is collected in the same plots as vegetation structure, tree diversity, tree age 

and seedling regeneration data.  

SOIL HEALTH 

• Texture, soil moisture, cation exchange capacity, soil organic carbon, pH, nutrient analysis (P,K,N), 

electrical conductivity, N-mineralisation and soil respiration can all be sampled using the same 

sampling pattern and samples could be taken at the same time, ready for laboratory analysis. 

Each sample location should be recorded with GPS, to ensure that subsequent sampling is taken 

from the same place. Fields up to 10 hectares can be sampled as one unit, providing each field is 

uniform (same soil type and management), by sending a composite sample to the laboratory. 

Each composite sample will be composed of a minimum of 20 samples collected following the 

recommendations in the metric methodology, and mixed thoroughly together before sending to 
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the laboratory. This composite sample will give an average of the whole field.  Larger fields and 

fields that are not uniform should be subdivided and each part sampled separately. 

• When digging a soil pit for visually assessing soil structure, it is possible to integrate the visual 

assessment of porosity, surveying earthworms, and assessing aggregate stability.   

• Litter decomposition bags can be placed in specific areas within the grid cells where visual 

assessments of soil structure are taking place, as well as measurements of infiltration rates.  

• Nematodes are usually unevenly distributed and sampling procedure needs to be more thorough. 

At least 50 cores must be taken evenly from an area of no more than 4 hectares. 

How the metrics were chosen and assessed 

Literature review 

As a starting point for selecting biodiversity metrics we used Noss’ Biodiversity Hierarchy (Noss 1990). 

Noss’ Hierarchy organises biodiversity into three sub-categories: composition, structure, and 

function, aiming to capture the breadth and complexity of biodiversity (Figure 1). These metrics apply 

at different scales (landscape, community, population, genetic). For each category of biodiversity at 

each scale, Noss defines metrics or groups of metrics. These were supplemented by literature 

searches on biodiversity monitoring, biodiversity metrics, ecological indicators, ecological integrity, 

and ecological health, and assessment of the grey literature, to provide the maximum set of metrics. 

The literature reviewed is listed in the Bibliography. 

Soil health can be classified using a combination of physical, chemical, and biological indicators (Jian 

et al. 2020). Potential metrics of soil health were identified through literature searches of academic 

and grey literature on soil health monitoring, soil health indicators, soil quality, soil ecosystem 

services, soil biological indicators, soil biodiversity, soil physical indicators, soil chemical indicators 

and soil health assessment. A total of 118 indicators were obtained from the literature, these were 

then ranked by frequency and the percentage of papers and monitoring frameworks that considered 

each metric in their assessments was calculated. The indicators that were mentioned in at least 20 % 

of the literature were shortlisted. Indicators that were considered as part of the minimum set of 

indicators required for a monitoring framework in grey literature, even if not mentioned in at least 

20 % of the academic literature, were also considered and combined with the shortlist. This yielded 

a total of 39 indicators, which were further evaluated to select the minimum set of metrics as 

described in the section on Scoring the metrics. 

Methodologies for data collection for both soil and biodiversity indicators were identified during the 

literature, grey literature, and web searches. We prioritised identification of existing standardised 

methodologies and monitoring schemes. This will allow integration with existing datasets, 

comparison between sites, and comparison to UK-wide trends. The UK National Biodiversity Network 

database of Wildlife Survey and Recording Schemes (https://nbn.org.uk/tools-and-resources/useful-

websites/database-of-wildlife-surveys-and-recording-schemes/) and UK Environmental Change 

https://nbn.org.uk/tools-and-resources/useful-websites/database-of-wildlife-surveys-and-recording-schemes/
https://nbn.org.uk/tools-and-resources/useful-websites/database-of-wildlife-surveys-and-recording-schemes/
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Network (https://ecn.ac.uk/measurements) were used to identify standardised methodologies for 

taxonomic monitoring – mostly focussed on surveying specific taxonomic groups. Habitat-focussed 

survey schemes e.g. the UK Habitat Classification, UK Countryside Survey and the National Forest 

Inventory were also assessed. Soil health focused survey schemes that included standardised 

methodologies were identified, e.g. the UK Countryside Survey, AHDB soil health score card, FAO Soil 

Doctor Programme and Farm Carbon Toolkit.  

The most relevant and useful metrics were identified by reviewing literature to assess evidence on 

the relationship between each metric and biodiversity or soil health. Information on pros, cons, and 

feasibility was also evaluated during the literature review process. We collated information on 

technological innovations that could simplify or accelerate the data collection process in the future.  

Scoring the metrics 

As discussed above, Tier 1 indicators cover a core set of metrics that broadly capture the response of 

biodiversity and soil health to NbS interventions. Tier 2 metrics build on the Tier 1 metrics and in 

some cases are applicable to some ecosystem types only. Future metrics are indicators that are highly 

informative but generally not yet feasible to collect, and/or require further testing and development.  

To help to group the metrics into Tier 1, Tier 2 and Future, we developed a scoring system assessing 

informativeness and feasibility of data collection for each metric (Table 1). The derived scores served 

as a guide for metric selection, and assessment of the suitability of each metric was also based on 

the literature review described above. Each metric was assigned 1, 2, or 3 points for each criterion; 

more points indicate better metric performance for that criterion. For example, 3 points for 

Relevance means there is strong evidence that the metric is relevant to biodiversity or 3 points for 

Cost means the metric is less expensive to monitor. The maximum possible score is 36 points. 

For the biodiversity metrics, Tier 1 required an informativeness score ≥15, a feasibility score ≥12, 

and met the additional criteria of being applicable across all ecosystem types. Tier 2 metrics had an 

informativeness score 12-14 and a feasibility score ≥12; some Tier 2 metrics are applicable in some 

ecosystem types only. Future metrics scored <12 for feasibility and were split into Future Tier 1 if 

informativeness scored ≥15 and Future Tier 2 if informativeness scored 12-14.  

For soil health, Tier 1 metrics scored ≥30, Tier 2 metrics scored 25-30 and Future metrics scored 23-

25.  All indicators scoring <30 points underwent additional scrutiny if they demonstrated a high 

degree of informativeness and relevance. In-depth analysis was conducted, including a 

comprehensive literature review, to assess their potential suitability as either Tier 2 or prospective 

metrics for future consideration. Metrics that scored 25 were further analysed and if their lower 

score was due to lower feasibility, they were not included in Tier 2 and were categorised as Future 

metrics despite being informative.  

https://ecn.ac.uk/measurements
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Table 1. Criteria used to score biodiversity and soil health metrics.  

Informativeness Feasibility 

Relevance: How strong is the evidence that the 

metric is directly or indirectly relevant to 

biodiversity/soil health?  

Sample collection: How straightforward is 

sample collection & analysis? 

Information rich: How many metrics can be 

calculated from one data collection method? 

Can the metric be used as a surrogate for other 

metrics? 

Cost: How expensive is data collection and 

analysis? 

Sensitivity: How sensitive is the metric to 

management changes? 

Technical: How much technical expertise or 

equipment is needed? 

Functions/services: Are there clear links 

between the metric and ecosystem functions 

and derived services? 

Methodology: Is there an existing standardised 

methodology available? 

Applicability: Can the metric be applied across 

habitat types? 

Compatibility: Is the methodology robust and 

repeatable? 

Literature: How widely is the metric considered 

in the academic literature? 

Interpretation: How easy are results to 

interpret? 

 

The biodiversity metrics functional trait diversity and identity were elevated from Future Metrics to 

Tier 1, despite a feasibility score of 11, to represent the Function aspect of biodiversity within Tier 1. 

These two metrics lack a clearly defined framework for classifying species by functional traits, 

however we offer guidance for applying functional traits in different contexts, which can be tailored 

to meet project needs. Vegetation structure is also an informative biodiversity metric but currently 

lacks a standardised and straightforward data collection approach in some ecosystem types. 

However, we encourage practitioners to work with guidance provided to collect data on vegetation 

structure in their projects and have therefore included it in Tier 1.  
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Glossary of Terms 

METRIC TYPE 

Biodiversity: Metrics representing the diversity of living organisms within a Nature-based Solutions 

(NbS) project. Biodiversity supports the functioning of ecosystems and their capacity to deliver 

ecosystem services. It is captured at multiple scales, from genetic to landscape scale. 

Soil health: The current capacity of a soil to function within natural or managed ecosystem and land-

use boundaries. The healthier a soil is, the better it is at providing important ecosystem services and 

helping to sustain plant, human and animal productivity and health. 

ASPECT OF BIODIVERSITY  

Composition: The identity and variety of elements that comprise biodiversity. Composition indicators 

describe the species present and the communities that they form. Example indicators: habitat types, 

species diversity, allelic diversity (diversity of alleles within population). 

Structure: The physical organisation within a system. Structural indicators describe the physical 

patterns that support species. Example indicators: habitat diversity, vegetation structure, genetic 

heterozygosity (presence of two different alleles at a locus within an individual).  

Function: The ecological and evolutionary processes and dynamics that underpin functioning within 

a system. Function indicators describe the processes that result from interactions between species, 

species interactions with the physical environment, and genetic processes within species. Example 

indicators: natural disturbances, nutrient cycling, gene flow.  

ASPECT OF SOIL HEALTH 

Biological: Indicators connecting to living organisms within or connected to soil. Biological indicators 

are more dynamic in nature than chemical and physical indicators, and therefore will change more 

over time and with management. Example indicators: earthworms, nematodes, bacteria, soil 

respiration, microbial activity. 

Chemical: Indicators connecting to substances of which matter is composed. Chemical indicators 

relate to soil properties and how they react/change over time. Example indicators: pH, Cation 

Exchange Capacity (CEC), Soil Organic Carbon (SOC), salinity, heavy metals. 

Physical: Indicators connected to the structure of a soil, particularly in connection to solid particles 

and pores. Physical indicators primarily reflect limitations to root growth, seedling emergence, 

infiltration, or movement of water within the soil profile. Example indicators: bulk density, porosity, 

texture, compaction, aggregate stability. 

SCALE 

Landscape: Metrics that apply at landscape scales, encompassing a mosaic of habitat types, 

landforms, and land uses. (Measurement scale: 100m – km) 
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Community: Metrics that apply at the ecosystem scale, focussing on a group of interdependent plants 

and animals usually within a relatively homogeneous area of habitat. (Measurement scale: 

cm – 100m) 

Population: Metrics that apply at the species level, assessing population trends. (Measurement scale: 

mm – m) 

Genetic: Metrics that assess genetic variation and processes within species. (Measurement scale: 

nm – mm) 

TIER 

Tier 1: Metrics that are highly informative, have standardised methodologies available, are highly 

feasible to monitor and apply across all ecosystem types.  

Tier 2: Metrics that are informative, but methods for data collection may only be partially available 

or metrics are less feasible to monitor. 

Future metrics: Highly informative metrics but methodology not standardised and generally 

unfeasible to monitor (i.e., requires high level of expertise or costs too high). 

ECOSYSTEM 

Agriculture: Areas characterised by production of crops and raising livestock. This can include 

cropland, pasture, and agroforestry. 

Forest: Areas with >25% tree cover (that are more than 5m in height). 

Grassland: Vegetated areas (not on waterlogged soils) characterised by herbaceous vegetation (>75% 

grasses, sedges, rushes, ferns & forbs) rather than woody vegetation. 

Heathland: Vegetated areas with >25% cover of plants from the heath family, dwarf gorse, or western 

gorse. 

Peatland: Rain-fed inundated or waterlogged habitats where peat has formed. 

Saltmarsh: The upper, vegetated portions of intertidal mudflats. 

Wetland (non-peat): Vegetated areas that are waterlogged or inundated, but with greater variation 

in the water table (compared to peatlands) which prevents peat formation.  

COST 

The exact expenses can differ considerably depending on the location, and are influenced by factors 

such as the availability of laboratories or specialized field equipment. There are many soil testing 

facilities in the UK and pricing information is frequently obtainable only through direct inquiries. The 

exact expenses will also be influenced by the uniformity of the area to be sampled. As for uniform 

plots it is possible to send composite samples to the laboratory, in which case you still sample 20 
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different spots but mix them properly and send off only 1 sample to the laboratory (max for 10 Ha of 

uniform fields/plots) incurring in lower laboratory costs than described below.   

Low: Limited funds required for fieldwork activities. Cost of sampling a 10-ha field <£600 for soil 

health and <£2000 for biodiversity. 

Medium: Requires some funding for fieldwork activities. Cost of sampling a 10-ha field £600-£1200 

for soil health and £2000-5000 for biodiversity. 

High: Requires high funding for fieldwork activities. Cost of sampling a 10-ha field >£1200 for soil 

health and >£5000 for biodiversity. 

TECHNICAL EXPERTISE 

Low: Requires limited knowledge and understanding to collect data and/or does not require a high 

level of technology or machinery and/or does not require technical expertise to analyse/interpret 

results.  

Medium: Requires moderate knowledge and understanding to collect data and/or requires moderate 

understanding of appropriate technology or machinery and/or requires moderate technical expertise 

to analyse/interpret results. 

High: Requires expert knowledge and understanding to collect data and/or requires a high level of 

technology or machinery and/or requires technical expertise to analyse/interpret results. 

STANDARDISED METHODOLOGY  

Yes: International/nationally recognised methodology (including sampling regime, sampling method 

and metric calculation).  

No: No international/nationally recognised methodology (including sampling regime, sampling 

method and metric calculation). 

Partial: International/nationally recognised methodology (including sampling regime, sampling 

method & metric calculation) partly established or only covers part of the process of metric 

calculation. 
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